Publication: Sistema de prevención y estudio contra la diabetes, utilizando estrategias de machine learning
Loading...
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Corporación Universitaria Remington
Abstract
Este trabajo de grado se enfoca en el análisis de datos de consumo de clientes del gimnasio MEGA GYM HIT, realizando un seguimiento a sus usuarios con el fin de enfocarse en mejorar los niveles de salud y prevención de enfermedades como la obesidad, propone un sistema de recomendación de prevención de obesidad basado en estrategias de clustering. El análisis de datos inicia con la recolección de información de transacciones, incluyendo características como la edad, genero de los usuarios, el peso y la altura, también se busca conocer los niveles de actividad física que realiza el usuario estos niveles tendrán un rango entre 1 y 4, el índice de masa corporal también es una variable que se va a levantar en el estudio para cada usuario esta medida se tomara por profesionales capacitados. Esta información se somete a un proceso de limpieza y normalización para asegurar la calidad y consistencia de los datos. A partir de este análisis, se propone utilizar algoritmos de clustering como K-means y DBSCAN con el objetivo de agrupar a los usuarios en segmentos con patrones en edades, niveles de actividad física peso y altura. El proceso de clustering permite identificar grupos homogéneos de usuarios, facilitando la creación de recomendaciones personalizadas de evaluación los niveles de obesidad en el que se encuentra y como generar un plan de trabajo para remediar estas afecciones. Los clusters revelan insights sobre las necesidades de mejorar los hábitos saludables dentro de los usuarios del gimnasio, como alertas para generar de manera oportuna acciones de mejora. La recomendación basada en clustering optimiza la segmentación y el agrupamiento, mejorando la servicio para usuarios que necesiten un seguimiento adicional para mejorar su salud. El modelo es evaluado mediante métricas como el silhouette score, que valida la cohesión de los clusters, y se ajusta iterativamente para refinar las recomendaciones. Los resultados demuestran que esta metodología ofrece recomendaciones más precisas y relevantes en comparación con enfoques tradicionales, mejorando la experiencia del usuario.
Description
Keywords
Sistemas de recomendación, Segmentación de usuarios, Clustering, Agrupamientos, Obesidad