Publication:
Sistema de analizar los rendimientos entre 100 estudiantes de informática, entre los niveles de depresión, rendimiento académico y patrones de TDAH (Trastorno por Déficit de Atención e Hiperactividad), utilizando estratégias de machine learning

dc.contributor.advisorBriñez de León, Juan Carlos
dc.contributor.authorDíaz Ojeda, Andrés Felipe
dc.date.accessioned2024-11-15T21:05:57Z
dc.date.available2024-11-15T21:05:57Z
dc.date.issued2024
dc.description.abstractEn el presente trabajo de investigación se elaboró un modelo Machine Learning para predecir el rendimiento académico de los estudiantes universitarios, se utilizó el programa de dataset El objetivo de esta investigación es determinar en qué porcentaje Machine Learning permite predecir el rendimiento académico con precisión, sensibilidad y especificidad, con el fin de poder identificar a los alumnos con probabilidad de éxito o fracaso. En esta investigación se utilizó una población de 100 estudiantes de informática, así mismo se usó la totalidad de la población como muestra. Por otro lado, el estudio es de tipo aplicada, con un diseño de investigación experimental de tipo pre-experimental de un solo grupo, ya que luego de aplicar Machine Learning se podrá observar los resultados y realizar la medición. Como resultado en relación a la precisión, sensibilidad y especificad para los algoritmos de árbol de decisión.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) de Sistemasspa
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.uniremington.edu.co/handle/123456789/5412
dc.language.isospaspa
dc.publisherCorporación Universitaria Remingtonspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.placePopayán (Cauca, Colombia)spa
dc.publisher.programIngeniería de Sistemasspa
dc.rightsDerechos Reservados - Corporación Universitaria Remington, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectDominanciaspa
dc.subjectClusteringspa
dc.subjectImpacto de la depresiónspa
dc.subjectPatronesspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembAnálisis de datos
dc.subject.lembEstudiantes universitarios
dc.titleSistema de analizar los rendimientos entre 100 estudiantes de informática, entre los niveles de depresión, rendimiento académico y patrones de TDAH (Trastorno por Déficit de Atención e Hiperactividad), utilizando estratégias de machine learningspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RIU-PRE-2024 Sistema analizar rendimientos.pdf
Size:
756.17 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
No Thumbnail Available
Name:
Cesión Derechos_TG 1.pdf
Size:
305.44 KB
Format:
Adobe Portable Document Format
Description: