Publication: Sistema de recomendación para detectar patrones climáticos utilizando estrategias de machine learning
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Corporación Universitaria Remington
Abstract
A medida que la humanidad ha avanzado en la recopilación y análisis de datos climáticos, su uso para la toma de decisiones ha cobrado gran relevancia, especialmente en un contexto donde el cambio climático intensifica fenómenos como inviernos extremos y sequías prolongadas. La prevención y la acción ante estos eventos se han vuelto esenciales para proteger a las comunidades y mitigar los impactos de los desastres naturales. En este sentido, la inteligencia artificial y el machine learning ofrecen herramientas valiosas al identificar patrones climáticos que permiten anticipar eventos extremos y mejorar la preparación para emergencias. El análisis realizado sobre datos climáticos ha revelado patrones estacionales que ayudan a prever fenómenos naturales y a mitigar riesgos en sectores clave como la agricultura y la energía. Además, se observaron correlaciones significativas entre variables como presión atmosférica, humedad y velocidad del viento, que pueden funcionar como indicadores tempranos de condiciones severas. Estos patrones y correlaciones permiten desarrollar modelos predictivos que refuerzan los sistemas de alerta y mejoran la capacidad de respuesta ante situaciones adversas. Finalmente, los modelos empleados, como las regresiones múltiples, han demostrado ser efectivos en la predicción a corto y mediano plazo de fenómenos climáticos específicos. Esto refuerza la idea de que la integración de la ciencia de datos y la inteligencia artificial es un componente crucial para enfrentar los desafíos actuales del cambio climático y tomar decisiones informadas que salvaguarden a la sociedad.
Description
Keywords
Sistemas de recomendación, Clustering, Temperatura, Temperatura de punto de rocío, Precipitación, Humedad relativa, Velocidad del viento, Presión atmosférica