Publication:
Algoritmo computacional para el análisis y toma de decisiones en datos de predicción de la calidad de la leche, utilizando estrategias de machine learning

dc.contributor.advisorBriñez de León, Juan Carlos
dc.contributor.authorAlzate Alzate, Santiago
dc.date.accessioned2024-04-16T12:42:22Z
dc.date.available2024-04-16T12:42:22Z
dc.date.issued2024
dc.description.abstractEn este escrito, se destacan resultados y análisis sobre la predicción de la calidad de la leche, un líquido fundamental para garantizar la calidad alimentaria de los consumidores. La importancia de este análisis radica en su capacidad para evaluar diversos factores que influyen en la producción de leche y, a partir de ahí, identificar herramientas y medidas que permitan mejorar los estándares de calidad de este producto. La intención detrás de esta investigación y análisis es doble: por un lado, se busca comprender y prever la calidad de la leche, lo cual es crucial para garantizar la seguridad alimentaria y la satisfacción del consumidor. Por otro lado, se persigue identificar áreas de mejora en los procesos de producción láctea, con el fin de optimizar la eficiencia y la calidad del producto final. Al evaluar los factores que afectan la producción de leche, se pueden identificar posibles puntos de intervención para mejorar la calidad del producto. Esto puede incluir aspectos como la alimentación y manejo del ganado, las condiciones sanitarias de las instalaciones de producción, los procesos de pasteurización y almacenamiento, entre otros. La toma de decisiones basada en estos análisis puede conducir a la implementación de medidas correctivas y preventivas que mejoren la calidad y seguridad de la leche producida. Los posibles impactos en la cadena de productividad también son importantes de considerar. Mejorar la calidad de la leche puede tener efectos positivos en toda la cadena de producción láctea. Por ejemplo, al reducir la incidencia de contaminación o enfermedades en el ganado, se pueden evitar pérdidas económicas y mejorar la eficiencia en la producción. Asimismo, una leche de mayor calidad puede aumentar la satisfacción del consumidor, lo que a su vez puede llevar a un incremento en la demanda y, por ende, en la rentabilidad de los productores y empresas lácteas.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) de Sistemasspa
dc.format.extent17 p.
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.uniremington.edu.co/handle/123456789/2662
dc.language.isospaspa
dc.publisherCorporación Universitaria Remingtonspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.placeMedellín (Antioquia, Colombia)spa
dc.publisher.programIngeniería de Sistemasspa
dc.rightsDerechos Reservados - Corporación Universitaria Remington, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectPredicciónspa
dc.subjectLechespa
dc.subjectCalidadspa
dc.subjectVariablesspa
dc.subjectDatasetspa
dc.subjectAlimentospa
dc.subjectInteligencia artificialspa
dc.subject.lembToma de decisiones
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembIndustria lechera
dc.titleAlgoritmo computacional para el análisis y toma de decisiones en datos de predicción de la calidad de la leche, utilizando estrategias de machine learningspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RIU-PRE-2024 Algoritmo computacional analisis.pdf
Size:
772.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
No Thumbnail Available
Name:
Cesión Derechos_TG 10.pdf
Size:
301.57 KB
Format:
Adobe Portable Document Format
Description: