Publication: Optimización de estrategias de marketing mediante análisis de datos
dc.contributor.advisor | Castaño Osorio, Ivonne | |
dc.contributor.author | Patiño Hincapié, Brandon Esneider | |
dc.contributor.author | Arboleda Restrepo, Santiago | |
dc.date.accessioned | 2025-04-25T20:33:44Z | |
dc.date.available | 2025-04-25T20:33:44Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Este trabajo de grado se enfoca en analizar y predecir el abandono de clientes en EasyTech.com, una empresa de comercio electrónico especializada en productos electrónicos y tecnológicos. A través de técnicas de análisis de datos y machine learning, se busca identificar patrones de comportamiento en los clientes para mejorar las estrategias de marketing y fidelización. Se utiliza la metodología CRISP-DM para estructurar el proceso de análisis, abarcando desde la identificación de problemas hasta la implementación de soluciones basadas en datos. Para ello, se revisaron 3,000 registros de datos de clientes, que incluyen el historial de compras, las interacciones de marketing y las métricas de satisfacción. Se establecieron métricas clave como la segmentación de clientes por edad, género y ubicación, la identificación de tendencias de compra y el impacto de las estrategias de descuentos en la retención de clientes. Los resultados obtenidos subrayan la importancia de personalizar las campañas de marketing y ajustar las estrategias de fidelización para mejorar la experiencia del cliente. Se recomienda implementar modelos de predicción de abandono, optimizar la asignación de recursos en publicidad y diseñar programas de lealtad basados en datos analíticos. Con estas estrategias, la empresa espera aumentar la tasa de retención y el crecimiento de clientes en un 10% en el próximo año. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) de Sistemas | spa |
dc.format.extent | 21 p. | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.uniremington.edu.co/handle/123456789/6909 | |
dc.language.iso | spa | spa |
dc.publisher | Corporación Universitaria Remington | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.place | Pereira (Risaralda, Colombia) | spa |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.rights | Derechos Reservados - Corporación Universitaria Remington, 2025 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject | Análisis descriptivo | spa |
dc.subject | Análisis de datos | spa |
dc.subject | Fidelización de clientes | spa |
dc.subject | Machine Learning | spa |
dc.subject | Segmentación de clientes | spa |
dc.subject.lemb | Relaciones con los clientes | |
dc.subject.lemb | Satisfacción del consumidor | |
dc.subject.lemb | Análisis de datos | |
dc.title | Optimización de estrategias de marketing mediante análisis de datos | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | spa |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- RIU-PRE-2025 Optimizacion estrategias marketing.pdf
- Size:
- 617.84 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 2 of 2
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
No Thumbnail Available
- Name:
- BL-FR-11 Cecion derecho de grado Brandon esneider rodriguez, santiago arboleda.pdf
- Size:
- 313.16 KB
- Format:
- Adobe Portable Document Format
- Description: