Publication:
Proyecto aplicación machine learning en la Agencia de Turismo Agentur

dc.contributor.advisorVélez Uribe, Juan Pablo
dc.contributor.authorZapata Gallego, Juan David
dc.contributor.authorGonzález Vásquez, Julián Andrés
dc.date.accessioned2024-01-17T20:29:55Z
dc.date.available2024-01-17T20:29:55Z
dc.date.issued2023
dc.description.abstractPara llevar a cabo este proyecto, realizamos una investigación exhaustiva sobre los modelos más comunes para el análisis de datos en Machine Learning, centrándonos en el seminario proporcionado en la plataforma Crehana. Esta fuente ha sido clave para obtener la mayor parte de la información. Nuestro enfoque se dirige hacia la aplicación práctica de estos conocimientos en el sector turístico, específicamente en la agencia de viajes “Agentur”. A pesar de los desafíos que enfrentó el sector turístico durante la pandemia, actualmente es una de las industrias que experimenta un notable crecimiento debido a una alta demanda. Este crecimiento ha impulsado la proliferación de agencias, principalmente virtuales, con plataformas avanzadas de autogestión que ganan protagonismo frente a las agencias físicas. Motivados por esta tendencia, decidimos implementar un proyecto de Machine Learning que permita a la agencia “Agentur” implementar herramientas tecnológicas para estar a la altura de las agencias virtuales. Comenzamos recopilando datos e información, posteriormente filtrándose y procesándolos con el objetivo de mejorar significativamente la experiencia de los clientes de la agencia Agentur. Se aborda los fundamentos del Machine Learning, destacando el uso de Python y herramientas como Numpy, Pandas, Scikits Learn, y Jupyter Notebooks. Se detalla el proceso para aplicar Python en ejercicios de regresión, incluyendo la descarga de librerías, asignación de nombres a variables y la transformación de variables no numéricas a Dummy. Se explica el concepto de aprendizaje supervisado, sus categorías y variables dependientes e independientes. Se mencionan algoritmos como regresión lineal, regresión logística, árboles de decisión, bosque aleatorio y redes neuronales. Se introduce el concepto de contrafactual y efecto causal, señalando la limitación del Machine Learning en encontrar relaciones causales. Se exploran algoritmos causales como Double LASSO, Causal Trees y Causal Forest. El texto también aborda la evaluación de modelos, el workflow de Machine Learning, la preparación de datos, la etapa de entrenamiento y métricas de desempeño como la matriz de confusión. Se presentan métodos de validación cruzada como Holdout Cross Validation.Se discuten principios del Machine Learning como la generalización, la navaja de Ockham y conocimiento jerárquico. Se explora la evolución del lenguaje natural, destacando GPT-3 y Github Copilot como herramientas potentes. Se menciona la importancia de la innovación tecnológica con inteligencia artificial, los algoritmos evolutivos y la lógica difusa. Este proyecto revela la convergencia estratégica entre la innovación tecnológica y la industria turística. Con el creciente papel de la inteligencia artificial, y más específicamente del Machine Learning, en la toma de decisiones empresariales, este proyecto busca transformar la forma en que la agencia comprende y se relaciona con sus clientes. La esencia del proyecto se centra en la anticipación de las necesidades y deseos del cliente a través de modelos predictivos de Machine Learning. Al abordar la capacidad de prever el interés de los clientes en realizar segundas y terceras compras, así como en la evaluación de patrones de interés, preferencias de destinos y estrategias de marketing, se plantea una visión innovadora para la mejora de la fidelización del cliente. Este enfoque no solo busca aumentar las ventas y optimizar las campañas de marketing, sino que también pretende proporcionar una experiencia más personalizada y satisfactoria para cada cliente. Al alinear la tecnología con las expectativas del cliente en la industria de viajes, se aspira no solo a la eficiencia operativa, sino a la creación de relaciones más sólidas y duraderas, llevando la fidelización del cliente a un nuevo nivel.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Industrialspa
dc.format.extent38 p.
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.uniremington.edu.co/handle/123456789/2033
dc.language.isospaspa
dc.publisherCorporación Universitaria Remingtonspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.placeMedellín (Antioquia, Colombia)spa
dc.publisher.programIngeniería Industrialspa
dc.rightsDerechos Reservados - Corporación Universitaria Remington, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectMachine Learningspa
dc.subjectBig Dataspa
dc.subjectInversión tecnológicaspa
dc.subjectAprendizaje automáticospa
dc.subjectRegresión logísticaspa
dc.subjectAprendizaje supervisadospa
dc.subjectLa ética en la inteligencia artificialspa
dc.subjectAnálisis contrafactualspa
dc.subjectClusteringspa
dc.subjectRedes neuronalesspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembAgencias de viajes
dc.subject.lembAprendizaje supervisado (Aprendizaje automático)
dc.titleProyecto aplicación machine learning en la Agencia de Turismo Agenturspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RIU-PRE-2023 Proyecto aplicacion machine.pdf
Size:
588.84 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
No Thumbnail Available
Name:
BL-FR-11 Cesión Derechos_TG .pdf
Size:
224.44 KB
Format:
Adobe Portable Document Format
Description: