Publication:
El machine learning en academias de educación vial

dc.contributor.advisorVélez Uribe, Juan Pablo
dc.contributor.authorEnríquez Quintero, Niyileth Karina
dc.contributor.authorBautista Villamizar, Laura Valentina
dc.date.accessioned2024-01-19T15:26:48Z
dc.date.available2024-01-19T15:26:48Z
dc.date.issued2023
dc.description.abstractEn este proyecto, se exploraron varios temas relacionados con la evaluación y supervisión de procesos en sistemas de información apoyados por el Aprendizaje Automático. Se aplicó el Aprendizaje Automático en Academias de Educación Vial para mejorar la gestión de la enseñanza y la evaluación de los conductores, centrándose en la predicción del consumo de combustible de los vehículos de enseñanza para optimizar los recursos y reducir los costes. La introducción al Aprendizaje Automático destacó su capacidad de aprender sin programación explícita, utilizando datos para mejorar continuamente el rendimiento del sistema. Se abordaron conceptos como el aprendizaje supervisado y no supervisado, junto con la importancia de la Ciencia de Datos. En el análisis de datos de las Academias de Educación Vial, se exploró cómo el Aprendizaje Automático puede identificar patrones en el rendimiento de los alumnos, personalizando la instrucción y contribuyendo a la automatización, especialmente en el control eficiente del combustible. Se presentó el concepto de Big Data como principal insumo para las aplicaciones de Aprendizaje Automático, generando información valiosa para la toma de decisiones estratégicas. También se hizo hincapié en la importancia de una buena estrategia de datos y en la pirámide de valor de los datos. En el mundo de la ciencia de datos, el Aprendizaje Automático se ha convertido en un cambio de juego, revolucionando la forma en que abordamos problemas complejos. Sin embargo, con la creciente complejidad de los modelos, la necesidad de interpretabilidad e inferencia causal se ha vuelto más crítica que nunca. Para hacer frente a esto, se han desarrollado varios algoritmos, como Propensity Score, Double LASSO, Causal Trees y Causal Forest, para mejorar la interpretación de los modelos y permitir una toma de decisiones informada. Estos algoritmos se centran en comprender la causalidad y la correlación, que son esenciales para desarrollar modelos sólidos. El proceso de evaluación de los modelos de Aprendizaje Automático es un paso crucial en este ámbito. Implica comprender el problema empresarial, preparar y modelar los datos, evaluar el rendimiento del modelo y finalizarlo. La preparación de los datos implica utilizar herramientas como pandas en Python, emplear técnicas como MinMaxScaler y get_dummies, y asegurarse de que los datos están limpios y listos para el análisis. Se hace hincapié en el entrenamiento de modelos y la selección de algoritmos, junto con métricas de rendimiento como las matrices de confusión, la exactitud, la precisión, el recuerdo y otras. Las técnicas de validación cruzada son esenciales para una sólida selección de modelos, y el aprendizaje supervisado mediante conjuntos de datos etiquetados se utiliza para entrenar algoritmos.
dc.description.degreelevelTecnologíaspa
dc.description.degreenameTecnólogo(a) en Desarrollo de Softwarespa
dc.format.extent60 p.
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.uniremington.edu.co/handle/123456789/2040
dc.language.isospaspa
dc.publisherCorporación Universitaria Remingtonspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.placeMedellín (Antioquia, Colombia)spa
dc.publisher.programTecnología en Desarrollo de Softwarespa
dc.rightsDerechos Reservados - Corporación Universitaria Remington, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectMachine Learningspa
dc.subjectInteligencia artificialspa
dc.subjectAprendizaje supervisadospa
dc.subjectAprendizaje no supervisadospa
dc.subjectPythonspa
dc.subjectRstudiospa
dc.subjectInnovación tecnológicaspa
dc.subjectBig Dataspa
dc.subjectPirámide de valor de los datosspa
dc.subjectVariable objetivospa
dc.subjectRegresiónspa
dc.subjectClasificaciónspa
dc.subjectAcademia de enseñanza automovilísticaspa
dc.subjectVehículo de enseñanzaspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembAprendizaje supervisado (Aprendizaje automático)
dc.subject.lembInteligencia artificial
dc.titleEl machine learning en academias de educación vialspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RIU-PRE-2023 Machine learning academias.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
No Thumbnail Available
Name:
BL-FR-11 Cesión Derechos_TG (1).Laura y Niyileth.pdf
Size:
217.08 KB
Format:
Adobe Portable Document Format
Description: