Tecnología en Desarrollo de Software
Permanent URI for this collection
El egresado de la tecnología de Desarrollo de Software de la Facultad de Ciencias Básicas e Ingeniería de Uniremington tiene las suficientes competencias cognitivas, comunicativas y tecnológicas que apuntan a su desempeño cualificado en la creación de proyectos que optimicen procesos de automatización, orientados a la generación de productos con altos niveles de calidad y eficiencia.
Browse
Browsing Tecnología en Desarrollo de Software by Author "Briñez de León, Juan Carlos"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Publication Algoritmo computacional para el análisis y toma de decisiones en datos de deserción escolar, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) Castaño Díaz, José Camilo; Briñez de León, Juan CarlosEl abandono de los estudios antes de culminar el ciclo educativo representa un desafío multidimensional con repercusiones personales y sociales significativas. A través de este proyecto, se examinaron de manera exhaustiva los factores determinantes, patrones y estrategias para abordar este fenómeno en el contexto colombiano. Los hallazgos revelaron una tendencia decreciente en las tasas nacionales de deserción durante la última década, aunque persisten brechas preocupantes en ciertos segmentos poblacionales y regiones geográficas. Las disparidades más notorias se evidenciaron entre las zonas urbanas y rurales, con índices de abandono considerablemente más elevados en estas últimas, reflejando las barreras adicionales que enfrentan las comunidades alejadas de los centros urbanos. Asimismo, los análisis indicaron que los niveles superiores de educación, particularmente la enseñanza media, exhiben mayores tasas de deserción en comparación con la primaria, destacando la urgencia de implementar estrategias de retención específicas en estas etapas cruciales de formación académica.Publication Algoritmo computacional para el análisis y toma de decisiones en datos de lugares con mayor incidencia de Covid-19, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) Castro Camargo, Oscar Andrés; Briñez de León, Juan CarlosLa propagación descontrolada del COVID-19 en China, Italia, Irán y la República de Corea resultó en un porcentaje más alto de casos en comparación con países como Francia, España, Alemania, Emiratos Árabes Unidos y otras naciones europeas. Varios factores contribuyeron a esta notable diferencia en las tasas de incidencia. En China, donde se originó el brote, la falta de preparación inicial y la demora en implementar medidas de contención efectivas permitieron que el virus se propagara rápidamente. La alta densidad poblacional en algunas regiones y la intensa movilidad interna fueron facilitadores adicionales de la transmisión (Huang et al., 2020). Italia fue uno de los primeros países europeos en registrar un gran número de casos debido a la tardanza en imponer medidas de distanciamiento social, la alta proporción de población anciana vulnerable y la arraigada cultura de reuniones familiares frecuentes (Remuzzi & Remuzzi, 2020). En Irán, las autoridades fueron lentas en reconocer la gravedad de la situación y tardaron en implementar medidas de contención adecuadas. Además, la celebración de eventos masivos y la negativa inicial a cancelar las peregrinaciones religiosas aceleraron la propagación del virus (Abdi, 2020). La República de Corea experimentó un brote significativo relacionado con la Iglesia de Shincheonji, cuyos miembros se reunían en lugares cerrados y algunos ocultaron inicialmente sus afiliaciones, dificultando el rastreo de contactos (Lee et al., 2020). En contraste, países como Francia, España, Alemania y los Emiratos Árabes Unidos, si bien tuvieron un número considerable de casos, implementaron medidas de contención más rápidamente y contaban con sistemas de salud más preparados, lo que pudo haber contribuido a una menor tasa de incidencia en comparación con los primeros países mencionados (Legido-Quigley et al., 2020).Publication Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) García Ramírez, Sebastián; Briñez de León, Juan CarlosLa llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama de las TIC, que actualmente busca aplicaciones en sectores como la salud, emulando el razonamiento humano, el aprendizaje, la resolución de problemas y la percepción. El desarrollo de estrategias computacionales basadas en algoritmos de machine learning (ML) ha sido impulsado por la OMS y enfocándolo en La osteoporosis un trastorno esquelético de alto impacto socioeconómico. Estos algoritmos se entrenan con datos demográficos, de estilo de vida y de salud para identificar personas en riesgo rápidamente. El procesamiento de datos implica cargar conjuntos de datos en plataformas como Colab, eliminar filas y columnas innecesarias y duplicados, y normalizar datos categóricos. Variables como el género, los cambios hormonales, los antecedentes familiares, la actividad física y el consumo de sustancias se analizan. El modelo de toma de decisiones, que se basa en el aprendizaje supervisado, utiliza un algoritmo para clasificar a las personas en riesgo en función de patrones que se encuentran en los datos de entrenamiento. Esto implica recopilar y procesar datos de pacientes, elegir los algoritmos de clasificación apropiados y entrenar el modelo. Un conjunto de datos de prueba se utiliza para evaluar el modelo para comprender su rendimiento y factores de impacto. El objetivo de la implementación de esta estrategia computacional es mejorar el diagnóstico, la prevención y el tratamiento individualizado de la osteoporosis. Esta estrategia podría usarse en herramientas de diagnóstico, selección de tratamiento, modelos de riesgos y campañas de concientización.Publication Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) Leguizamo Rodríguez, Daryl Giselle; Briñez de León, Juan CarlosActualmente nos encontramos en la era de los datos, muchas empresas por bastante tiempo contaron con un excelente manejo de sus procesos, pero debido a que el mundo sigue en constante cambio las entidades se han visto obligadas a utilizar nuevas técnicas e implementar métodos digitales para que sus empresas puedan ampliarse y llegar a mayor público. Sin embargo, todos esos datos recolectados con el tiempo pueden aportar información clave y relevante que brinde ayuda para mejorar o comprender como se maneja la entidad y con que utilidades puede disponer para brindar un servicio de calidad. Por esa razón, el objetivo de este trabajo de grado es dejar en manifiesto como el aprendizaje automático más conocido también como el Machine Learning puede contribuir a la toma de decisiones en estos tiempos actuales de datos. Se quiere demostrar que podemos sacar provecho de la era digital para nuestro beneficio, con ayuda de la inteligencia artificial, el Machine Learning usaremos todas las variables y los datos integrando las herramientas o algoritmos de esta inteligencia para sacar posibles conclusiones y resultados que aporten a la entidad de manera constructiva. Se utilizará una base de datos para realizar el desglose de la información y tener un análisis detallado de las variables para tomar una decisión en base a los resultados. Esta base de datos es de una empresa que tiene como objetivo entregar pedidos de alimentos en línea, usaremos técnicas del Machine Learning para consultar la información, obtener como se dividen los datos y que aspectos se toman en cuenta en la entidad de entrega de pedidos de alimentos en línea. Además, se evaluará como estas variables se relacionan entre sí y que puede aportarnos del comportamiento que ejerce la entidad en su lugar de operación, al analizar estos datos a profundidad podemos implementar la técnica de Machine Learning mencionada anteriormente. Esta técnica denominada “aprendizaje no supervisado (agrupación)” tiene como objetivo brindar resultados que estén orientados a mejorar la producción de la entidad o relacionar como las variables se parecen entre sí con miras a la toma de futuras decisiones. Por ende, se visualizará como al integrar nuevos registros a la base de datos después de usar un método de segmentación, los datos se reparten y nos genera una predicción de en qué agrupación de la información corresponde y como esto nos da una idea del manejo de la entidad y su relación entre sí.Publication Algoritmo computacional para el análisis y toma de decisiones en datos de presupuesto para la compra de materiales de fabricación para prensa compactadora de cascarilla, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) González Feria, Franklin Fabian; Briñez de León, Juan CarlosLa transformación digital es un proceso mediante el cual una empresa introduce tecnologías nuevas en sus procesos y estructuras, para hacerla más eficiente y productiva. Es un cambio en el cual se involucran todos los empleados y que también tiene que ver los clientes. Por ejemplo, la primera revolución industrial fue marcada por la aparición de la maquina a vapor, la segunda con la cadena de montaje, la tercera con la aparición de la informática y las energías renovables y estamos en la cuarta con el descubrimiento de los sistemas ciber físicos, el Big Data y el internet de las cosas.Publication Algoritmo computacional para el análisis y toma de decisiones en datos de solicitudes de gestión de capacidad Sofka Technologies, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) Ynfante Valero, Surelys A.; Ospina Zúñiga, Nevardo Antonio; Briñez de León, Juan CarlosEn la industria de las tecnologías de la información (TI) está en constante evolución, Sofka Technologies, se ha posicionado como una empresa líder en consultoría y desarrollo de software, brindando soluciones innovadoras y adaptables para satisfacer las demandas del mercado. En este contexto dinámico, el Machine Learning (ML) ha emergido como una herramienta fundamental para analizar grandes volúmenes de datos, tomar decisiones informadas y automatizar procesos. Específicamente, en el ámbito de la gestión de solicitudes de capacidad en Sofka Technologies, el ML representa una oportunidad para optimizar la asignación de recursos técnicos y humanos a proyectos, mejorar los flujos de trabajo y aumentar la eficiencia operativa. Esto es crucial para el éxito de los proyectos y la satisfacción del cliente. El presente trabajo aborda la pregunta de cómo un algoritmo de Machine Learning puede optimizar la gestión de solicitudes de capacidad en Sofka Technologies, con el objetivo de mejorar la asignación de recursos y la eficiencia operativa. Los datos utilizados provienen de registros internos de solicitudes de posiciones laborales que Sofka Technologies ha gestionado, recopilados por sus departamentos de Recursos Humanos. Estas solicitudes incluyen información como país, tipo de cliente, centro de excelencia, número de posiciones, fechas, tipo de atención, estado, año y calificación. El análisis propuesto implica caracterizar y procesar estos datos, implementar algoritmos de Machine Learning, evaluar su desempeño y validar la toma de decisiones con nuevos datos. Las posibles aplicaciones incluyen la previsión de demanda por área y el análisis del mercado laboral por país, lo cual puede respaldar decisiones estratégicas de expansión y enfoque geográfico.Publication Algoritmo computacional para el análisis y toma de decisiones en datos de ventas en la licorera JC Granizados, utilizando estrategias de machine learning(Corporación Universitaria Remington, 2024) Bustamante Bedoya, Juan Sebastián; Briñez de León, Juan CarlosLa presente investigación se realizó con el fin de tener una predicción de ventas a partir de un modelo de regresión. En este se utilizó la herramienta de machine learning con el modelo KNNR, utilizando los datos recolectados en la licorería JC granizados ubicada en el municipio de Sabaneta, Antioquia. Se tuvieron en cuenta variables como el mes, la fecha, que día del fin de semana es, la base y el total de ingresos por día, con los datos recolectados a partir del software del establecimiento se realizó un procesamiento donde se analizaron las fechas exactas de cada día registrado, para así verificar si pertenecían al viernes, sábado, domingo o festivo, posterior a esto fueron presentados al algoritmo para tener los resultados solicitados. Gracias a este modelo se puede predecir el valor de las ventas del fin de semana próximo y así el establecimiento realice la toma de decisiones, ya sea una estrategia de marketing para aumentar las ventas o también saber cuánta cantidad de pedido debe de realizar y si necesita apoyo de más personal. Este modelo puede ser utilizado por los establecimientos encargados de la comercialización de productos ya que les permitiría conocer cómo van sus ventas y como mejorarlas.Publication Optimización de estrategias de ventas y gestión de inventario en LC Shoes(Corporación Universitaria Remington, 2024) Loaiza Duarte, Luis Javier; Briñez de León, Juan CarlosEste informe presenta un análisis detallado del conjunto de datos de inventario de zapatos de LC Shoes, una microempresa privada dedicada a la comercialización y venta de calzado de alta calidad. LC Shoes ofrece una amplia variedad de estilos y colores, dirigidos a hombres y mujeres contemporáneos. Su misión es satisfacer las necesidades de los clientes con productos cómodos y elegantes, y sus valores fundamentales incluyen el respeto, la laboriosidad, la perseverancia y el espíritu de equipo. La empresa busca posicionarse como una marca tradicional y duradera, comprometida con la calidad y el buen servicio. Este análisis se centra en el inventario actual de la empresa, proporcionando información crucial para la toma de decisiones operativas y estratégicas.