Publication:
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning

dc.contributor.advisorBriñez de León, Juan Carlos
dc.contributor.authorCruz Santos, Edwin Ferney
dc.date.accessioned2024-04-15T20:40:18Z
dc.date.available2024-04-15T20:40:18Z
dc.date.issued2024
dc.description.abstractDurante la ejecución del proyecto actual de Machine learning en tiempo de datos, se inicia con la identificación de variables para su análisis, recurriendo a los historiales de empresas u organizaciones dedicadas a recopilar la información necesaria en formato de conjuntos de datos. Estos conjuntos de datos son esenciales para facilitar el aprendizaje del modelo y la toma de decisiones adecuadas, así como para fomentar un aprendizaje continuo a partir de la información que se recopila diariamente. Para llevar a cabo este proceso, se han seleccionado las condiciones climáticas que podrían haber desencadenado posibles incendios forestales en Colombia durante el año 2022. A partir de estos mismos datos, es posible identificar las zonas más afectadas durante el período mencionado. Esto, a su vez, permite desarrollar estrategias para abordar la situación en dichas zonas, teniendo en cuenta la magnitud del impacto. La extensión geográfica de los incendios y su intensidad son variables clave que se tienen en cuenta al diseñar acciones preventivas y de respuesta. Es importante destacar que el análisis de datos no se limita únicamente a la identificación de áreas afectadas, sino que también implica la evaluación de factores subyacentes que contribuyen a la propagación y la severidad de los incendios forestales. Esto puede incluir factores como la densidad forestal, la presencia de vías de acceso, la disponibilidad de recursos para combatir incendios y las condiciones climáticas locales. En resumen, el proyecto actual de Machine learning en tiempo de datos se centra en la identificación y análisis de variables clave relacionadas con los incendios forestales en Colombia en el año 2022, con el objetivo de desarrollar estrategias efectivas para la prevención y respuesta ante futuros eventos similares. Este enfoque integrado, que combina la recopilación y análisis de datos con técnicas avanzadas de modelado predictivo, es fundamental para mejorar la capacidad de anticipación y gestión de riesgos en el contexto de la gestión forestal y la protección del medio ambiente.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) de Sistemasspa
dc.format.extent23 p.
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.uniremington.edu.co/handle/123456789/2653
dc.language.isospaspa
dc.publisherCorporación Universitaria Remingtonspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.placeMedellín (Antioquia, Colombia)spa
dc.publisher.programIngeniería de Sistemasspa
dc.rightsDerechos Reservados - Corporación Universitaria Remington, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectPuntos calientesspa
dc.subjectAtención de emergenciasspa
dc.subjectAnálisis de datosspa
dc.subject.lembCambios climáticos
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembToma de decisiones
dc.titleAlgoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learningspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RIU-PRE-2024 Algoritmo computacional analisis.pdf
Size:
591.62 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
No Thumbnail Available
Name:
Cesión Derechos_TG 3.pdf
Size:
298.67 KB
Format:
Adobe Portable Document Format
Description: